QUENCHING OF SINGLET OXYGEN BY ELECTRON DONATING DERIVATIVES OF 1,4-DIHYDROPYRIDINE

É. Ya. Kazush, E. I. Sagun, G. D. Tirzit, and G. Ya. Dabur

It is shown that a series of derivatives of 1,4-dihydropyridine are capable of efficiently quenching singlet oxygen by a mixed quenching mechanism.

Single oxygen ($^{1}O_{2}$), one of the active forms of oxygen, takes part in many biological processes, especially in photodynamic systems. $^{1}O_{2}$ is a very reactive species which efficiently initiates the peroxide oxidation of lipid and causes the degradation of proteins, nucleotides, and biomembranes. Consequently, the interest in compounds that deactivate $^{1}O_{2}$, thus protecting biological systems from decomposition, is understandable [1].

Derivatives of 1,4-dihydropyridine (1,4-DHP) attract attention as substances with a wide range of biological activity – antioxidant, cardiovascular, radioprotective, etc. Often, these properties are explained by the ability of 1,4-DHP to react with active forms of oxygen. Consequently, an investigation of the reactivity of 1,4-DHP with active forms of oxygen is of definite value in elucidating the mechanism of its biological activity. However, the reactivity of derivatives of 1,4-DHP with $^{1}O_{2}$ has seldom been investigated [2-4]. We have determined the overall quenching constants of $^{1}O_{2}$ (k_{q}) and the rates of chemical oxidation by $^{1}O_{2}$ (k_{ox}) of a series of derivatives of 1,4-DHP and 1,4-dihydroindeno[1,2-b]pyridines (1,4-DHIP) containing electron donor groups. The results obtained are collected in Table 1.

The results of the investigations show that some derivatives of 1,4-DHP are good quenchers of $^{1}O_{2}$ (compounds 1a and 1b), surpassing in activity the standard quencher - 1,4-diazabicyclo[2,2,2]octane. Comparing the quenching constants of the derivatives of 1,4-DHP, one can see that the replacement of a hydrogen atom in the 4 position of the 1,4-DHP ring causes a strong decrease in the quenching constants and rates of oxidation (compounds Ia, Ib, and compounds Ic-f). True, there is some increase in the quenching constants when the electron donor properties of the substituent in the 4 position is strengthened, e.g., the presence in this position of a phenyl or alkoxyphenyl substituent (compounds Id-f). Derivatives of 1,4-DHIP are more reactive towards $^{1}O_{2}$ than are those of 1,4-DHP (compare Ic and IIc). The mechanism of quenching $^{1}O_{2}$ obviously includes a chemical as well as a physical quenching of $^{1}O_{2}$, as shown by the scheme:

$$^{1}O_{2}$$
 + 1.4-DHP $\stackrel{A}{\longrightarrow}$ $[O_{2} \cdots 1.4-DHP]^{\bullet}$ $\stackrel{B}{\longrightarrow}$ $^{3}O_{2}$ + 1.4-DHP $\stackrel{C}{\longrightarrow}$ reaction products

A is a reaction forming a collision complex or an exiplex, B is the reaction for the physical quenching of $^{1}O_{2}$, and C is the reaction for the chemical quenching of $^{1}O_{2}$.

Since 1,4-DHP derivatives are reducing agents and good electron donors, especially those unsubstituted in the 4 position, it is most likely that the physical quenching of ${}^{1}O_{2}$ takes place by a charge transfer mechanism, while the chemical quenching is an oxidation reaction giving the corresponding pyridine derivative or forming an addition product. It is known that the oxidation of NAD-H by photochemically generated ${}^{1}O_{2}$ gives about 80% NAD+ and 20% products of an undeter

Latvian Institute of Organic Synthesis, Riga LV-1006. Institute of Physics, Academy of Sciences of Belarus, Minsk 220602. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 641-643, May, 1994. Original article submitted May 30, 1994.

TABLE 1. Constants for the Quenching and Chemical Oxidation of Singlet Oxygen by Derivatives of 1,4-DHP and 1,4-DHIP

$$R^{3}OOC$$
 H
 $COOR^{5}$
 $H_{3}C$
 H
 CH_{3}
 H
 CH_{3}

Com- pound	K3 ≈ K2	R4	kq.s ⁻¹	k _{ox} [10 ₂], s ⁻¹
Ia	C2115	П	1,6.107	7,6 • 10 →
Ib	C ₁₀ H ₁₉ (menthyl-3')	I-I	$3.5 \cdot 10^7$	3,1.10-3
Ic	C ₂ H ₅	CoH5	5,0.104	7,3.10-6
Id	C2115	C6114O11~4	9,8.104	1,1.10-5
Ie	C2115	C6H2(OCH3)3-3,4,5	1,3.105	5,1.10-6
If	C2115	CH=CHC6H5	8,9-104	7,5.10-6
IIa	C ₁₀ H ₁₀ (menthyl-3')	β -Py	_	4,4.10-5
IIb	C2115	β -Py		2,9.10-5
IIc	C2115	CoH5	_	4,5 • 10 - 5
1,4-diazabicyclo[2,2,2]octane			2.2.107	-

mined nature [4]. Comparison of the changes in k_q and k_{ox} shows the contribution of chemical quenching to k_q to be about the same, in good agreement with the literature data for NAD-H and NADP-H [3]. Thus, for compounds 1a-e, k_q and k_{ox} vary symbatically. However, the increased degree of conjugation in If $(R^4 = CH = CH - C_6H_5)$ compared to Ic $(R^4 = C_6H_5)$ causes an almost twofold increase in k_q while k_{ox} is practically unchanged, indicating an increased contribution from the physical quenching mechanism. It is also of interest to note that compound Ia, which has a large k_q , is used in cosmetics as a shield against UV radiation (in the composition of the antisunburn cream Brig), and in medicine as a protective agent against radiation.

EXPERIMENTAL

The $^{1}O_{2}$ quenching constants (k_{q}) were determined in a pulse apparatus [5] from oscillograms of the decay of the oxygen luminescence corresponding to the $^{1}\Delta_{g} \rightarrow \Sigma_{g}^{-}$ transition in molecular O_{2} (1270 nm). The experiments were carried out in a CCl₄ (90%)/CHCl₃ (10%) mixture with the Pd(II) complex of the IX-diethyl ester of mesoporphyrin as a sensitizer. Having determined the dependence of the lifetime of $^{1}O_{2}$ on the concentration of 1,4-DHP by the Stern-Volmer equation, we calculated k_{q} . WE determined the rate constants of the chemical oxidation spectrophotometrically from the initial rate of the decrease in the intensity of absorption by the 1,4-DHP derivatives at the wavelength of the wavelength maximum in the photochemical generation of $^{1}O_{2}$ by red light ($\lambda > 630$ nm), using methylene blue in methanol as a sensitizer.

REFERENCES

- 1. A. F. Frimer (ed.), Singlet O₂, CRC Press, Vol. 1-5 (1985).
- 2. G. D. Tirzim, I. M. Byteva, K. I. Salokhiddinov, G. P. Gurinovich, and G. Ya. Dubur, Khim. Geterotsikl. Soedin., No. 7, 924 (1981).
- 3. G. Peters and M. A. J. Rodgers, Biochim. Biophys. Acta, 637, 43 (1981).
- 4. R. S. Bodaness, Biochem. Biophys. Res. Commun., 108, 1709 (1982).
- 5. K. I. Salokhiddinov, I. M. Byteva, and B. M. Dzhagarov, Opt. Spektr., 47, 881 (1979).